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Abstract

This is the second paper in a series started in [15] which aims to provide mathematical
descriptions of objects and constructions related to the first few steps of the semantical theory
of dependent type systems.

We construct for any pair (R,LM), where R is a monad on sets and LM is a left module
over R, a C-system (“contextual category”) CC(R,LM) and describe, using the results of [15]
a class of sub-quotients of CC(R,LM) in terms of objects directly constructed from R and
LM . In the special case of the monads of expressions associated with nominal signatures this
construction gives the C-systems of general dependent type theories when they are specified by
collections of judgements of the four standard kinds.

1 Introduction

The first few steps in all approaches to the semantics of dependent type theories remain insu�ciently
understood. The constructions which have been worked out in detail in the case of a few particular
type systems by dedicated authors are being extended to the wide variety of type systems under
consideration today by analogy. This is not acceptable in mathematics. Instead we should be able
to obtain the required results for new type systems by specialization of general theorems formulated
and proved for abstract objects the instances of which combine together to produce a given type
system.

One such class of objects is the class of C-systems introduced in [3] (see also [4]) under the name
“contextual categories”. A modified axiomatics of C-systems and the construction of new C-systems
as sub-objects and regular quotients of the existing ones in a way convenient for use in type-theoretic
applications are considered in [15].

Modules over monads were introduced in [6] in the context of syntax with binding and substitution.

In the present paper, after some general comments about monads on Sets and their modules, we
construct for any such monad R and a left module LM over R a C-system (contextual category)
CC(R,LM). We describe, using the results of [15], all the C-subsystems of CC(R,LM) in terms
of objects directly associated with R and LM .

We then define two additional operations � and e� on CC(R,LM) and describe the regular congru-
ence relations (see [15]) on C-subsystems of CC(R,LM) which are compatible in a certain sense
with � and e�.

Of a particular interest is the case of “syntactic” pairs where R({x1, . . . , xn}) and LM({x1, . . . , xn})
are the sets of expressions of some kind with free variables from {x1, . . . , xn} modulo an equivalence
relation such as ↵-equivalence.
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The simplest class of syntactic pairs where LM = R arises from signatures considered in [6, p.228].
To any such signature ⌃ one associates a class of expressions with bindings and R({x1, . . . , xn}) is
the set of such expressions with free variables from the set {x1, . . . , xn} modulo the ↵-equivalence.

Suppose now that we are given a type theory based on the syntax of expressions specified by ⌃ that
is formulated in terms of the four kinds of basic judgements originally introduced by Per Martin-Lof
in [11, p.161].

Since we are only interested in the ↵-equivalence classes of judgements we may assume that the
variables declared in the context are taken from the set of natural numbers such that the first
declared variable is 1, the second is 2 etc. Then, the set of judgements of the form

(1 : A1, . . . , n : An ` A type)

(in the notation of Martin-Lof “A type (1 2 A1, . . . , n 2 An)”) can be identified with the set of
judgements of the form

(1 : A1, . . . , n : An, n+ 1 : AB)

stating that the context (1 : A1, . . . , n : An, n+ 1 : A) is well-formed.

With this identification the type theory is specified by four sets C, eC,Ceq and gCeq where

C ⇢
a

n�0

LM(;)⇥ . . .⇥ LM({1, . . . , n� 1})

eC ⇢
a

n�0

LM(;)⇥ . . .⇥ LM({1, . . . , n� 1})⇥R({1, . . . , n})⇥ LM({1, . . . , n})

Ceq ⇢
a

n�0

LM(;)⇥ . . .⇥ LM({1, . . . , n� 1})⇥ LM({1, . . . , n})2

gCeq ⇢
a

n�0

LM(;)⇥ . . .⇥ LM({1, . . . , n� 1})⇥R({1, . . . , n})2 ⇥ LM({1, . . . , n})

On the other hand we show that any pair (CC,⇠), where CC is a sub-C-system of CC(R,LM) and
⇠ is a regular congruence relation on CC, defines four subsets of such form. Proposition 6.2 spells
out the necessary and su�cient conditions that the sets C, eC,Ceq, gCeq should satisfy in order to
correspond to a pair (CC,⇠).

A wider class of syntactic pairs (R,LM) that arises from nominal signatures is considered in Section
7.

This is one the papers extending the material which I started to work on in [14]. I would like
to thank the Institute Henri Poincare in Paris and the organizers of the “Proofs” trimester for
their hospitality during the preparation of this paper. The work on this paper was facilitated by
discussions with Richard Garner and Egbert Rijke.

Notation: For morphisms f : X ! Y and g : Y ! Z we denote their composition as f � g. For
functors F : C ! C0, G : C0 ! C00 we use the standard notation G � F for their composition.

2 Left modules over monads

Recall (cf. [6]) that a monad on a category C is a functor M : C ! C together with two families of
morphisms:
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1. for any X 2 C, a morphism ⌘X : X ! R(X),

2. for any X 2 C, a morphism µX : R(R(X)) ! R(X)

which satisfy certain conditions. For objects X, X 0 and a morphism f : X 0 ! R(X), the compo-

sition R(X 0)
R(f)! R(R(X))

µX! R(X) is a morphism bind(f) : R(X 0) ! R(X). This allows one to
describe monads as follows:

Lemma 2.1 The construction outline above defines an equivalence between (the type of) monads
on C and (the type of) collections of data of the form:

1. for every object X an object R(X),

2. for every object X a morphism ⌘X : X ! R(X),

3. for every two objects X, X 0 and a morphism f : X ! R(X 0), a morphism bind(f) : R(X) !
R(X 0)

which satisfy the following conditions:

1. for an object X, bind(⌘X) = idR(X),

2. for a morphism f : X ! X 0, ⌘X � bind(f) = f ,

3. for two morphisms f : X ! R(X 0), g : X 0 ! R(X 00), bind(f � bind(g)) = bind(f) � bind(g).

Proof: Straightforward. Cf. [12], [8, Prop. 1].

Lemma 2.2 Let R be a monad on the product category C ⇥ D. Let A 2 D. Then the functor
RA,1 : X 7! prC(R(X,A)) has a natural structure of a monad on C.

Proof: One defines the morphisms ⌘X : X ! RA,1(X) by

⌘X := prC(⌘(X,A))

and morphisms bind(f) : RA,1(X) ! RA,1(X 0) for f : X ! RA,1(X 0) by

bind(f) := prC(bind(f, prD(⌘(X,A))))

The verification of the conditions of Lemma 2.1 is straightforward.

The concept of a module over a monad was first explicitly introduced in [6].

Definition 2.3 Let R be a monad on a category C. A left module over R with values in a category
D is a functor LM : C ! D together with, for all X,X 0 2 C and f : X ! R(X 0), a morphism
⇢(f) : LM(X) ! LM(X 0) such that

1. ⇢(⌘X) = IdLM(X),
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2. for f : X ! R(X 0), g : X 0 ! R(X 00), ⇢(f)⇢(g) = ⇢(f bind(g)).

One verifies easily (cf. [8, Def. 9]) that a left R-module structure on LM is the same as a natural
transformation LM � R ! LM which satisfies the expected compatibility conditions with respect
to Id ! R and R �R ! R.

Lemma 2.4 Let R be a monad on a category C. Then one has:

1. If LM1, LM2 are left R-modules with values in D1 and D2 respectively then the functor
X 7! (LM1(X), LM2(X)) has a natural structure of a left R-module with values in D1 ⇥D2.

2. If LM is a left R-module with values in D and F : D ! D0 is a functor then F � LM has a
natural structure of a left R-module with values in D0.

Proof: Straightforward.

Lemma 2.5 Under the assumptions and in the notation of Lemma 2.2 the morphisms

⇢(f : X ! RA,1(X
0)) = bind(f, prD(⌘(X0,A))) : R(X,A) ! R(X 0, A)

define a structure of a left RA,1-module with values in C ⇥D on the functor

MA,1 : X 7! R(X,A)

Proof: Direct verification of the conditions of Definition 2.3.

In the case of a monad R on Sets and a left R-module LM with values in Sets, for E 2
LM({x1, . . . , xn}) or E 2 R({1, . . . ,m}) and f : {x1, . . . , xn} ! R(X 0) such that f(xi) = fi
we write ⇢(f)(E) as E(f1/x1, . . . , fn/xn).

For E 2 LM({1, . . . ,m}) and n � 1 we set:

tn(E) = E[n+ 1/n, n+ 2/n+ 1, . . . ,m+ 1/m]

sn(E) = E[n/n+ 1, n+ 1/n+ 2, . . . ,m� 1/m]

If we were numbering elements of a set with n elements from 0 then we would have tn = LM(@n�1)
and sn = LM(�n�1) where @i and �i are the usual generators of the simplicial category.

For a monad R on Sets we let R � cor (“R-correspondences”) to be the full subcategory of the
Kleisli category of R whose objects are finite sets. Recall, that the set of morphisms from X to Y
in R� cor is the set of maps from X to R(Y ) i.e. R(Y )X (in other words, R� cor is the category
of free, finitely generated R-algebras).

We further let C(R) denote the pre-category4 with

Ob(C(R)) = N

Mor(C(R)) =
a

m,n2N
R({1, . . . ,m})n

which is equivalent, as a category, to (R� cor)op.

4
See the introduction to [15].
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Remark 2.6 A finitary monad (on sets) is a monad R : Sets ! Sets that, as a functor, commutes
with filtering colimits. Since any set is, canonically, the colimit of the filtering diagram of its finite
subsets, a functor Sets ! Sets that commutes with filtering colimits can be equivalently described
as a functor FSets ! Sets where FSets is the category of finite sets. Furthermore, Lemma 2.1
can be used to show that finitary monads on Sets can be defined as collections of data of the form:

1. for every finite set X a set R(X),

2. for every finite set X a function ⌘X : X ! R(X),

3. for every finite sets X, X 0 and a function f : X ! R(X 0), a function bind(f) : R(X) ! R(X 0)

which satisfy the conditions:

1. for a finite set X, bind(⌘X) = idR(X),

2. for a function of finite sets f : X ! X 0, ⌘X � bind(f) = f ,

3. for two functions f : X ! R(X 0), g : X 0 ! R(X 00), bind(f � bind(g)) = bind(f) � bind(g).

This description shows that for any monad R the restriction of R to a functor Rfin : FSets ! Sets
is a finitary monad.

Similar observations apply to left R-modules. The constructions of this paper, while done for a
general pair (R,LM), only depend on the corresponding finitary pair (Rfin, LMfin).

Remark 2.7 The correspondence R 7! C(R) defines an equivalence between the type of the
finitary monads on Sets and the type of the pre-category structures on N that extend the pre-
category structure of finite sets and where the addition remains to be the coproduct.

Remark 2.8 A finitary sub-monad of R is the same as a sub-pre-category in C(R) which contains
all objects. Intersection of two sub-monads is a sub-monad which allows one to speak of sub-monads
generated by a set of elements.

3 The C-system CC(R,LM).

Let R be a monad on Sets and LM a left module over R with values in Sets. Let CC(R,LM) be
the pre-category whose set of objects is Ob(CC(R,LM)) = qn�0Obn where

Obn = LM(;)⇥ . . .⇥ LM({1, . . . , n� 1})

and the set of morphisms is

Mor(CC(R,LM)) =
a

m,n�0

Obm ⇥Obn ⇥R({1, . . . ,m})n

with the obvious domain and codomain maps. The composition of morphisms is defined in the same
way as in C(R) such that the mapping Ob(CC(R,LM)) ! N which sends all elements of Obn to
n, is a functor from CC(R,LM) to C(R). The associativity of compositions follows immediately
from the associativity of compositions in R� cor.
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Note that if LM(;) = ; then CC(R,LM) = ; and otherwise the functor CC(R,LM) ! C(R) is an
equivalence, so that in the second case C(R) and CC(R,LM) are indistinguishable as categories.
However, as pre-categories they are quite di↵erent unless LM = (X 7! pt) in which case the functor
CC(R,LM) ! C(R) is an isomorphism.

The pre-category CC(R,LM) is given the structure of a C-system as follows. The final object is
the only element of Ob0, the map ft is defined by the rule

ft(T1, . . . , Tn) = (T1, . . . , Tn�1).

The canonical pull-back square defined by an object (T1, . . . , Tn+1) and a morphism

(f1, . . . , fn) : (R1, . . . , Rm) ! (T1, . . . , Tn)

is of the form:

(R1, . . . , Rm, Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,m+1)���������! (T1, . . . , Tn+1)

(1,...,m)

??y
??y(1,...,n)

(R1, . . . , Rm)
(f1,...,fn)������! (T1, . . . , Tn)

(1)

Proposition 3.1 With the structure defined above CC(R,LM) is a C-system.

Proof: Straightforward.

Remark 3.2 There is another construction of a pre-category from (R,LM) which takes as an
additional parameter a set V ar which is called the set of variables. Let Fn(V ar) be the set of se-
quences of length n of pair-wise distinct elements of V ar. Define the pre-category CC(R,LM, V ar)
as follows. The set of objects of CC(R,LM, V ar) is

Ob(CC(R,LM, V ar)) = qn�0 q(x1,...,xn)2Fn(V ar) LM(;)⇥ . . .⇥ LM({x1, . . . , xn�1})

For compatibility with the traditional type theory we will write the elements of Ob(CC(R,LM,X))
as sequences of the form x1 : E1, . . . , xn : En. The set of morphisms is given by

HomCC(R,LM,V ar)((x1 : E1, . . . , xm : Em), (y1 : T1, . . . , yn : Tn)) = R({x1, . . . , xm})n

The composition is defined in such a way that the projection

(x1 : E1, . . . , xn : En) 7! (E1, E2(1/x1), . . . , En(1/x1, . . . , n� 1/xn�1))

is a functor from CC(R,LM, V ar) to CC(R,LM).

This functor is clearly an equivalence of categories but not an isomorphism of pre-categories.

There are an obvious final object and the map ft on CC(R,LM, V ar).

There is however a real problem in making it into a C-system which is due to the following. Consider
an object (y1 : T1, . . . , yn+1 : Tn+1) and a morphism (f1, . . . , fn) : (x1 : R1, . . . , xm : Rm) ! (y1 :

6



T1, . . . , yn : Tn). In order for the functor to CC(R,LM) to be a C-system morphism the canonical
square build on this pair should have the form

(x1 : R1, . . . , xm : Rm, xm+1 : Tn+1(f1/1, . . . , fn/n))
(f1,...,fn,xn+1)���������! (y1 : T1, . . . , yn+1 : Tn+1)??y

??y

(x1 : R1, . . . , xm : Rm)
(f1,...,fn)������! (y1 : T1, . . . , yn : Tn)

where xm+1 is an element of V ar which is distinct from each of the elements x1, . . . , xm. Moreover,
we should choose xm+1 in such a way the the resulting construction satisfies the C-system axioms
for (f1, . . . , fn) = Id and for the compositions (g1, . . . , gm) � (f1, . . . , fn). One can easily see that
no such choice is possible for a finite set V ar. At the moment it is not clear to me whether or not
it is possible for an infinite V ar.

Recall from [15] that for a C-system CC one defines fOb(CC) as the subset of Mor(CC) which
consists of morphisms s of the form ft(X) ! X such that l(X) > 0 and s � pX = Idft(X).

Lemma 3.3 One has:

fOb(CC(R,LM)) ⇠=
a

n�0

LM(;)⇥ . . .⇥ LM({1, . . . , n})⇥R({1, . . . , n})

Proof: An element of fOb(CC(R,LM)) is a section s of the canonical morphism p� : � ! ft(�).
It follows immediately from the definition of CC(R,LM) that for � = (E1, . . . , En+1), a morphism
(f1, . . . , fn+1) 2 R({1, . . . , n})n+1 from ft(�) to � is a section of p� if an only if fi = i for i =
1, . . . , n. Therefore, any such section is determined by its last component fn+1 and mapping
((E1, . . . , En), (E1, . . . , En+1), (f1, . . . , fn+1)) to (E1, . . . , En, En+1, fn+1) we get a bijection

fOb(CC(R,LM)) ⇠=
a

n�0

LM(;)⇥ . . .⇥ LM({1, . . . , n})⇥R({1, . . . , n}) (2)

Using the notations of type theory we can write elements of Ob(CC(R,LM)) as

� = (T1, . . . , TnB)

where Ti 2 LM({1, . . . , i� 1}) and the elements of fOb(CC(R,LM)) as

J = (T1, . . . , Tn ` t : T )

where Ti 2 LM({1, . . . , i� 1}), T 2 LM({1, . . . , n}) and t 2 R({1, . . . , n}).

In this notation the operations T, eT , S, eS and � which were introduced in [15] take the form:

1. T ((�, Tn+1B), (�,�B)) = (�, Tn+1, tn+1(�)B) when l(�) = n,

2. eT ((�, Tn+1B), (�,� ` r : R)) = (�, Tn+1, tn+1(�) ` tn+1(r : R)) when l(�) = n,

3. S((� ` s : S), (�, S,�B)) = (�, sn+1(�[s/n+ 1])B) when l(�) = n,
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4. eS((� ` s : S), (�, S,� ` r : R)) = (�, sn+1(�[s/n+1]) ` sn+1((r : R)[s/n+1]) when l(�) = n,

5. �(�, TB) = (�, T ` (n+ 1) : T ) when l(�) = n.

Remark 3.4 One can easily construct on the function (R,LM) 7! CC(R,LM) the structure of a
functor from the “large module category” of [7] to the category of C-systems and their homomor-
phisms.

4 C-subsystems of CC(R,LM).

Let CC be a C-subsystem of CC(R,LM). By [15] CC is determined by the subsets C = Ob(CC)

and eC = fOb(CC) in Ob(CC(R,LM)) and fOb(CC(R,LM)).

For � = (E1, . . . , En) we write (�BC) if (E1, . . . , En) is in C and (� ` eC t : T ) if (E1, . . . , En, T, t)

is in eC.

The following result is an immediate corollary of [15, Proposition 4.3] together with the description
of the operations T, eT , S, eS and � for CC(R,LM) which is given above.

Proposition 4.1 Let (R,LM) be a monad on Sets and a left module over it with values in Sets.
A pair of subsets

C ⇢
a

n�0

n�1Y

i=0

LM({1, . . . , i})

eC ⇢
a

n�0

(
nY

i=0

LM({1, . . . , i}))⇥R({1, . . . , n})

corresponds to a C-subsystem CC of CC(R,LM) if and only if the following conditions hold:

1. (BC)

2. (�, TBC) ) (�BC)

3. (� ` eC r : R) ) (�, RBC)

4. (�, TBC) ^ (�,�,` eC r : R) ) (�, T, tn+1(�) ` eC tn+1(r : R)) where n = l(�1)

5. (� ` eC s : S) ^ (�, S,� ` eC r : R) ) (�, sn+1(�[s/n + 1]) ` eC sn+1((r : R)[s/n + 1])) where
n = l(�1),

6. (�, TBC) ) (�, T ` eC n+ 1 : T ) where n = l(�).

Note that conditions (4) and (5) together with condition (6) and condition (3) imply the following

4a (�, TBC) ^ (�,�BC) ) (�, T, tn+1(�)BC) where n = l(�1),

5a (� ` eC s : S) ^ (�, S,�BC) ) (�, sn+1(�[s/n+ 1])BC) where n = l(�1).

Note also that modulo condition (2), condition (1) is equivalent to the condition that C 6= ;.
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Remark 4.2 If one re-writes the conditions of Proposition 4.1 in the more familiar in type theory
form where the variables introduced in the context are named rather than directly numbered one
arrives at the following rules:

BC

x1 : T1, . . . , xn : TnBC

x1 : T1, . . . , xn�1 : Tn�1BC

x1 : T1, . . . , xn : Tn ` eC t : T

x1 : T1, . . . , xn : Tn, y : TBC

x1 : T1, . . . , xn : Tn, y : T BC x1 : T1, . . . , xn : Tn, . . . , xm : Tm ` eC r : R

x1 : T1, . . . , xn : Tn, y : T, xn+1 : Tn+1, . . . , xm : Tm ` eC r : R

x1 : T1, . . . , xn : Tn ` eC s : S x1 : T1, . . . , xn : Tn, y : S, xn+1 : Tn+1, . . . , xm : Tm ` eC r : R

x1 : T1, . . . , xn : Tn, xn+1 : Tn+1[s/y], . . . , xm : Tm[s/y] ` eC (r : R)[s/y]

x1 : E1, . . . , xn : EnBC

x1 : E1, . . . , xn : En ` eC xn : En

which are similar (and probably equivalent) to the “basic rules of DTT” given in [9, p.585]. The
advantage of the rules given here is that they are precisely the ones which are necessary and
su�cient for a given collection of contexts and judgements to define a C-system.

Lemma 4.3 Let CC be as above and let (E1, . . . , Em), (T1, . . . , Tn) 2 Ob(CC) and (f1, . . . , fn) 2
R({1, . . . ,m})n. Then

(f1, . . . , fn) 2 HomCC((E1, . . . , Em), (T1, . . . , Tn))

if and only if (f1, . . . , fn�1) 2 HomCC((E1, . . . , Em), (T1, . . . , Tn�1)) and

E1, . . . , Em ` eC fn : Tn(f1/1, . . . , fn�1/n� 1)

Proof: Straightforward using the fact that the canonical pull-back squares in CC(R,LM) are
given by (1).

Example 4.4 The category CC(R,R) for the identity monad is empty. For the monad of the form
R(X) = pt the C-system CC(R,R) has only two subsystems - itself and the trivial one for which
C = pt.

The first non-trivial example is the monad R(X) = X q {⇤}. We conjecture that in this case the
set of all subsystems of CC(R,R) is uncountable.

One can probably show this as follows. Let ✏ : N ! {0, 1}, be a sequence of 0’s and 1’s. Con-
sider the C-subsystem of CC✏ of CC(R,R) which is generated by the set of elements of the form
(⇤, 1, 2, . . . , nB) 2 Ob(CC(R,R)) for all n � 0 and elements (⇤, 1, . . . , n + 1 ` n + 2 : ⇤) 2
fOb(CC(R,R)) for n such that ✏(n) = 1.

It should be possible to show that CC✏ 6= CC✏0 for ✏ 6= ✏0 which would imply the conjecture.
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5 Operations � and e� on CC(R,LM).

C-systems of the form CC(R,LM) have an important additional structure which will play a role
in the next section. This structure is given by two operations:

1. for � = (T1, . . . , Tn, . . . , Tn+i) and �0 = (T 0
1, . . . , T

0
n) we set

�(�,�0) = (T 0
1, . . . , T

0
n, Tn+1, . . . , Tn+i)

This gives us an operation with values in Ob defined on the subset of Ob⇥Ob which consists
of pairs (�,�0) such that l(�) > l(�0),

2. for J = (T1, . . . , Tn�1, . . . , Tn�1+i ` t : Tn+i), �0 = (T 0
1, . . . , T

0
n) we set

e�(J ,�0) =

⇢
(T 0

1, . . . , T
0
n, Tn+1, . . . , Tn+i�1 : t : Tn+i) for i > 0

(T 0
1, . . . , T

0
n�1 ` t : T 0

n) for i = 0

This gives us an operation with values in fOb defined on the subset of fOb⇥Ob which consists
of pairs (J ,�0) such that l(@(J ))  l(�0).

6 Regular sub-quotients of CC(R,LM).

Let (R,LM) be as above and

Ceq ⇢
a

n�0

(
n�1Y

i=0

LM({1, . . . , i}))⇥ LM({1, . . . , n})2

gCeq ⇢
a

n�0

(
nY

i=0

LM({1, . . . , i}))⇥R({1, . . . , n})2

be two subsets.

For � = (T1, . . . , Tn) 2 ob(CC(R,LM)) and S1, S2 2 LM({1, . . . , n}) we write (� `Ceq S1 = S2) to
signify that (T1, . . . , Tn, S1, S2) 2 Ceq. Similarly for T 2 LM({1, . . . , n}) and o, o0 2 R({1, . . . , n})
we write (� `gCeq

o = o0 : S) to signify that (T1, . . . , Tn, S, o, o0) 2 gCeq. When no confusion is

possible we will omit the subscripts Ceq and gCeq at `.

Similarly we will write B instead of BC and ` instead of ` eC if the subsets C and eC are unambigu-
ously determined by the context.

Definition 6.1 Given subsets C, eC, Ceq, gCeq as above define relations ⇠ on C and ' on eC as
follows:

1. for � = (T1, . . . , Tn), �0 = (T 0
1, . . . , T

0
n) in C we set � ⇠ �0 i↵ ft(�) ⇠ ft(�0) and

T1, . . . , Tn�1 ` Tn = T 0
n,

2. for (� ` o : S), (�0 ` o0 : S0) in eC we set (� ` o : S) ' (�0 ` o0 : S0) i↵ (�, S) ⇠ (�0, S0) and

(� ` o = o0 : S).
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Proposition 6.2 Let C, eC, Ceq, gCeq be as above and suppose in addition that one has:

1. C and eC satisfy conditions (1)-(6) of Proposition 4.1 which are referred to below as conditions
(1.1)-(1.6) of the present proposition,

2.
(a) (� ` T = T 0))(�, TB)
(b) (�, TB))(� ` T = T )
(c) (� ` T = T 0))(� ` T 0 = T )
(d) (� ` T = T 0) ^ (� ` T 0 = T 00))(� ` T = T 00)

3.
(a) (� ` o = o0 : T ))(� ` o : T )
(b) (� ` o : T ))(� ` o = o : T )
(c) (� ` o = o0 : T ))(� ` o0 = o : T )
(d) (� ` o = o0 : T ) ^ (� ` o0 = o00 : T ))(� ` o = o00 : T )

4.
(a) (�1 ` T = T 0) ^ (�1, T,�2 ` S = S0))(�1, T 0,�2 ` S = S0)
(b) (�1 ` T = T 0) ^ (�1, T,�2 ` o = o0 : S))(�1, T 0,�0

2 ` o = o0 : S)
(c) (� ` S = S0) ^ (� ` o = o0 : S))(� ` o = o0 : S0)

5.

(a) (�1, TB) ^ (�1,�2 ` S = S0))(�1, T, ti+1�2 ` ti+1S = ti+1S0) i = l(�)
(b) (�1, TB) ^ (�1,�2 ` o = o0 : S))(�1, T, ti+1�2 ` ti+1o = ti+1o0 : ti+1S) i = l(�)

6.

(a) (�1, T,�2 ` S = S0) ^ (�1 ` r : T ))
(�1, si+1(�2[r/i+ 1]) ` si+1(S[r/i+ 1]) = si+1(S0[r/i+ 1])) i = l(�1)
(b) (�1, T,�2 ` o = o0 : S) ^ (�1 ` r : T ))
(�1, si+1(�2[r/i+ 1]) ` si+1(o[r/i+ 1]) = si+1(o0[r/i+ 1]) : si+1(S[r/i+ 1])) i = l(�1)

7.

(a) (�1, T,�2, SB) ^ (�1 ` r = r0 : T ))
(�1, si+1(�2[r/i+ 1]) ` si+1(S[r/i+ 1]) = si+1(S[r0/i+ 1])) i = l(�1)
(b) (�1, T,�2 ` o : S) ^ (�1 ` r = r0 : T ))
(�1, si+1(�2[r/i+ 1]) ` si+1(o[r/i+ 1]) = si+1(o[r0/i+ 1]) : si+1(S[r/i+ 1])) i = l(�1)

Then the relations ⇠ and ' are equivalence relations on C and eC which satisfy the conditions of
[15, Proposition 5.4] and therefore they correspond to a regular congruence relation on the C-system
defined by (C, eC).

Lemma 6.3 One has:

1. If conditions (1.2), (4a) of the proposition hold then (� ` S = S0) ^ (� ⇠ �0))(�0 ` S = S0).

2. If conditions (1.2), (1.3), (4a), (4b), (4c) hold then (� ` o = o0 : S)^((�, S) ⇠ (�0, S0)))(�0 `
o = o0 : S0).
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Proof: By induction on n = l(�) = l(�0).

(1) For n = 0 the assertion is obvious. Therefore by induction we may assume that (� ` S =
S0)^ (� ⇠ �0))(�0 ` S = S0) for all i < n and all appropriate �,�0, S and S0 and that (T1, . . . , Tn `
S = S0)^(T1, . . . , Tn ⇠ T 0

1, . . . , T
0
n) holds and we need to show that (T 0

1, . . . , T
0
n ` S = S0) holds. Let

us show by induction on j that (T 0
1, . . . , T

0
j , Tj+1, . . . , Tn ` S = S0) for all j = 0, . . . , n. For j = 0 it

is a part of our assumptions. By induction we may assume that (T 0
1, . . . , T

0
j , Tj+1, . . . , Tn ` S = S0).

By definition of ⇠ we have (T1, . . . , Tj ` Tj+1 = T 0
j+1). By the inductive assumption we have

(T 0
1, . . . , T

0
j ` Tj+1 = T 0

j+1). Applying (4a) with �1 = (T 0
1, . . . T

0
j), T = Tj+1, T 0 = T 0

j+1 and
�2 = (Tj+2, . . . , Tn) we conclude that (T 0

1, . . . , T
0
j+1, Tj+2, . . . , Tn ` S = S0).

(2) By the first part of the lemma we have �0 ` S = S0. Therefore by (4c) it is su�cient to show
that (� ` o = o0 : S) ^ (� ⇠ �0))(�0 ` o = o0 : S). The proof of this fact is similar to the proof of
the first part of the lemma using (4b) instead of (4a).

Lemma 6.4 One has:

1. Assume that conditions (1.2), (2b), (2c), (2d) and (4a) hold. Then ⇠ is an equivalence
relation.

2. Assume that conditions of the previous part of the lemma as well as conditions (1.3), (3b),
(3c), (3d), (4b) and (4c) hold. Then ' is an equivalence relation.

Proof: By induction on n = l(�) = l(�0).

(1) Reflexivity follows directly from (1.2) and (2b). For n = 0 the symmetry is obvious. Let
(�, T ) ⇠ (�0, T 0). By induction we may assume that �0 ⇠ �. By Lemma 6.3(a) we have (�0 `
T = T 0) and by (2c) we have (�0 ` T 0 = T ). We conclude that (�0, T 0) ⇠ (�, T ). The proof of
transitivity is by a similar induction.

(2) Reflexivity follows directly from reflexivity of ⇠, (1.3) and (3b). Symmetry and transitivity are
also easy using Lemma 6.3.

From this point on we assume that all conditions of Proposition 6.2 hold. Let C 0 = C/ ⇠ and
eC 0 = eC/ '. It follows immediately from our definitions that the functions ft : C ! C and
@ : eC ! C define functions ft0 : C 0 ! C 0 and @0 : eC 0 ! C 0.

Lemma 6.5 The conditions (3) and (4) of [15, Proposition 5.4] hold for ⇠ and '.

Proof: 1. We need to show that for (�, TB), and � ⇠ �0 there exists (�0, T 0B) such that (�, T ) ⇠
(�0, T 0). It is su�cient to take T = T 0. Indeed by (2b) we have � ` T = T , by Lemma 6.3(1) we
conclude that �0 ` T = T and by (1a) that �0, TB.

2. We need to show that for (� ` o : S) and (�, S) ⇠ (�0, S0) there exists (�0 ` o0 : S0) such that
(�0 ` o0 : S0) ' (� ` o : S). It is su�cient to take o0 = o. Indeed, by (3b) we have (� ` o = o : S),
by Lemma 6.3(2) we conclude that (�0 ` o = o : S0) and by (2a) that (�0 ` o : S0).

Lemma 6.6 The equivalence relations ⇠ and ' are compatible with the operations T, eT , S, eS and
�.
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Proof: (1) Given (�1, TB) ⇠ (�0
1, T

0B) and (�1,�2B) ⇠ (�0
1,�

0
2B) we have to show that

(�1, T, tn+1�2) ⇠ (�0
1, T

0, tn+1�
0
2).

where n = l(�1) = l(�0
1).

Proceed by induction on l(�2). For l(�2) = 0 the assertion is obvious. Let (�1, TB) ⇠ (�0
1, T

0B)
and (�1,�2, SB) ⇠ (�0

1,�
0
2, S

0B). The later condition is equivalent to (�1,�2B) ⇠ (�0
1,�

0
2B) and

(�1,�2 ` S = S0). By the inductive assumption we have (�1, T, tn+1�2) ⇠ (�0
1, T

0, tn+1�0
2). By

(5a) we conclude that (�1, T, tn+1�2 ` tn+1S = tn+1S0). Therefore by definition of ⇠ we have
(�1, T, tn+1�2, tn+1S) ⇠ (�0

1, T
0, tn+1�0

2, tn+1S0).

(2) Given (�1, TB) ⇠ (�0
1, T

0B) and (�1,�2 ` o : S) ' (�0
1,�

0
2 ` o0 : S0) we have to show that

(�1, T, tn+1�2 ` tn+1o : tn+1S) ' (�0
1, T

0, tn+1�0
2 ` tn+1o0 : tn+1S0) where n = l(�1) = l(�0

1). We
have (�1,�2, S) ⇠ (�0

1,�
0
2, S

0) and (�1,�2 ` o = o0 : S). By (5b) we get (�1, T, tn+1�2 ` tn+1o =
tn+1o0 : tn+1S). By (1) of this lemma we get (�1, T, tn+1�2, tn+1S) ⇠ (�0

1, T
0, tn+1�0

2, tn+1S0) and
therefore by definition of ' we get (�1, T, tn+1�2 ` tn+1o : tn+1S) ' (�0

1, T
0, tn+1�0

2 ` tn+1o0 :
tn+1S0).

(3) Given (�1 ` r : T ) ' (�0
1 ` r0 : T 0) and (�1, T,�2B) ⇠ (�0

1, T
0,�0

2B) we have to show that

(�1, sn+1(�2[r/n+ 1])) ⇠ (�0
1, sn+1(�

0
2[r

0/n+ 1])).

where n = l(�1) = l(�0
1). Proceed by induction on l(�2). For l(�2) = 0 the assertion follows directly

from the definitions. Let (�1 ` r : T ) ' (�0
1 ` r0 : T 0) and (�1, T,�2, SB) ⇠ (�0

1, T
0,�0

2, S
0B). The

later condition is equivalent to (�1, T,�2B) ⇠ (�0
1, T

0,�0
2B) and (�1, T,�2 ` S = S0). By the

inductive assumption we have (�1, sn+1(�2[r/n + 1])) ⇠ (�0
1, sn+1(�0

2[r
0/n + 1])). It remains to

show that (�1, sn+1(�2[r/n+1]) ` sn+1(S[r/n+1]) = sn+1(S0[r0/n+1])). By (2d) it is su�cient to
show that (�1, sn+1(�2[r/n+1]) ` sn+1(S[r/n+1]) = sn+1(S0[r/n+1])) and (�1, sn+1(�2[r/n+1]) `
sn+1(S0[r/n+ 1]) = sn+1(S0[r0/n+ 1])). The first relation follows directly from (6a). To prove the
second one it is su�cient by (7a) to show that (�1, T,�2, S0B) which follows from our assumption
through (2c) and (2a).

(4) Given (�1 ` r : T ) ' (�0
1 ` r0 : T 0) and (�1, T,�2 ` o : S) ' (�0

1, T
0,�0

2 ` o0 : S0) we have to
show that

(�1, sn+1(�2[r/n+ 1]) ` sn+1(o[r/n+ 1]) : sn+1(S[r/n+ 1])) '

(�0
1, sn+1(�

0
2[r

0/n+ 1]) ` sn+1(o
0[r0/n+ 1]) : sn+1(S

0[r0/n+ 1])).

where n = l(�1) = l(�0
1) or equivalently that

(�1, sn+1(�2[r/n+ 1]), sn+1(S[r/n+ 1])) ⇠ (�0
1, sn+1(�

0
2[r

0/n+ 1]), sn+1(S
0[r0/n+ 1]))

and (�1, sn+1(�2[r/n + 1]) ` sn+1(o[r/n + 1]) = sn+1(o0[r0/n + 1]) : sn+1(S[r/n + 1])). The first
statement follows from part (3) of the lemma. To prove the second statement it is su�cient by
(3d) to show that (�1, sn+1(�2[r/n+ 1]) ` sn+1(o[r/n+ 1]) = sn+1(o0[r/n+ 1]) : sn+1(S[r/n+ 1]))
and (�1, sn+1(�2[r/n + 1]) ` sn+1(o0[r/n + 1]) = sn+1(o0[r0/n + 1]) : sn+1(S[r/n + 1])). The first
assertion follows directly from (6b). To prove the second one it is su�cient in view of (7b) to show
that (�1, T,�2 ` o0 : S) which follows conditions (3c) and (3a).

(5) Given (�, T ) ⇠ (�0, T 0) we need to show that (�, T ` (n + 1) : T ) ' (�0, T 0 ` (n + 1) : T 0) or
equivalently that (�, T, T ) ⇠ (�, T 0, T 0) and (�, T ` (n+1) = (n+1) : T ). The second part follows
from (3b). To prove the first part we need to show that (�, T ` T = T 0). This follows from our
assumption by (5a).
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Lemma 6.7 Let C be a subset of Ob(CC(R,LM)) which is closed under ft. Let  be a transitive
relation on C such that:

1. �  �0 implies l(�) = l(�0),

2. � 2 C and ft(�)  F implies �(�, F ) 2 C and �  �(�, F ).

Then � 2 C and fti(�)  F for some i � 1, implies that �  �(�, F ).

Proof: Simple induction on i.

Lemma 6.8 Let C and  be as in Lemma 6.7. Then one has:

1. (�, T )  (�, T 0) and �  �0 implies that (�, T )  (�0, T 0),

2. if  is ft-monotone (i.e. �  �0 implies ft(�)  ft(�0)) and symmetric then (�, T )  (�0, T 0)
implies that (�, T )  (�, T 0).

Proof: The first assertion follows from

(�, T )  (�, T 0)  �((�, T 0),�0) = (�0, T 0)

The second assertion follows from

(�, T )  (�0, T 0)  �((�0, T 0),�) = (�, T 0)

where the second  requires �0  � which follows from ft-monotonicity and symmetry.

Lemma 6.9 Let C, be as in Lemma 6.7, let eC be a subset of fOb(CC(R,LM)) and 0 a transitive
relation on eC such that:

1. J 0 J 0 implies @(J )  @(J 0),

2. J 2 eC and @(J )  F implies e�(J , F ) 2 eC and J 0 e�(J , F ).

Then J 2 eC and fti(@(J ))  F for some i � 0 implies J  e�(J , F ).

Proof: Simple induction on i.

Lemma 6.10 Let C, and eC,0 be as in Lemma 6.9. Then one has:

1. (� ` o : T ) 0 (� ` o0 : T ) and (�, T )  (�0, T 0) implies that (� ` o : T ) 0 (�0 ` o0 : T 0),

2. if (,0) is @-monotone (i.e. J 0 J 0 implies @(J )  @(J 0)) and  is symmetric then
(� ` o : T ) 0 (�0 ` o0 : T 0) implies that (� ` o : T ) 0 (� ` o0 : T ).
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Proof: The first assertion follows from

(� ` o : T ) 0 (� ` o0 : T ) 0 e�((� ` o0 : T ), (�0, T 0)) = (�0 ` o0 : T 0)

The second assertion follows from

� ` o : T ) 0 (�0 ` o0 : T 0) 0 �((�0 ` o0 : T 0), (�, T )) = (� ` o0 : T )

where the second  requires �0  � which follows from @-monotonicity of 0 and symmetry of .

Proposition 6.11 Let (C, eC) be subsets in Ob(CC(R,LM)) and fOb(CC(R,LM)) respectively
which correspond to a C-subsystem CC of CC(R,LM). Then the constructions presented above

establish a bijection between pairs of subsets (Ceq, gCeq) which together with (C, eC) satisfy the con-
ditions of Proposition 6.2 and pairs of equivalence relations (⇠,') on (C, eC) such that:

1. (⇠,') corresponds to a regular congruence relation on CC (i.e., satisfies the conditions of
[15, Proposition 5.4]),

2. � 2 C and ft(�) ⇠ F implies � ⇠ �(�, F ),

3. J 2 eC and @(J ) ⇠ F implies J ' e�(J , F ).

Proof: One constructs a pair (⇠,') from (Ceq, gCeq) as in Definition 6.1. This pair corresponds
to a regular congruence relation by Proposition 6.2. Conditions (2),(3) follow from Lemma 6.3.

Let (⇠,') be equivalence relations satisfying the conditions of the proposition. Define Ceq as the

set of sequences (�, T, T 0) such that (�, T ), (�, T 0) 2 C and (�, T ) ⇠ (�, T 0). Define gCeq as the set
of sequences (�, T, o, o0) such that (�, T, o), (�, T, o0) 2 eC and (�, T, o) ' (�, T, o0).

Let us show that these subsets satisfy the conditions of Proposition 6.2. Conditions (2.a-2.d) and
(3.a-3d) are obvious.

Condition (4a) follows from (2) by Lemma 6.7. Conditions (4b) and (4c) follow from (3) by Lemma
6.9.

Conditions (5a) and (5b) follow from the compatibility of (⇠,') with T and eT .

Conditions (6a),(6b),(7a),(7b) follow from the compatibility of (⇠,') with S and eS.

7 Pairs (R,LM) associated with nominal signatures.

The constructions of this paper produce C-systems from a pair (R,LM) where R is a monad on

Sets and LM is a left R-module with values in Sets together with sets C, eC, Ceq and gCeq.

One class of such pairs is obtained by taking R to be the monad defined by a signature as in [6,
p.228]. For example, the contextual category of the Martin-Lof type theory from 1972, MLTT72
defined in [10], is obtained by applying Proposition 6.2 in the case of the pair (R,R) where R is
the monad defined by the signature that corresponds to the nominal signature of Example 7.2.

The following construction that covers more examples associates a pair (R,LM) to a quadruple
(⌃, T erm, P,Type) where ⌃ is a nominal signature with one name-sort V ar and a set of data-sorts
D, Term 2 D is a data-sort, P is a family of sets parametrized by D� {Term}, and Type ⇢ {D}
is a subset of data-sorts.
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In most examples either D = {Term} or D = {Term, Type}, Type = {Type} and P = PType is
the set of ”type-variables”.

The only example which I know of where there are more than two data-sorts is the logic-enriched
type theory of [1] where D = {Term, Type, Prop}, Type = {Type}, PType is the set of type
variables and PProp is the set of propositional variables.

The construction is as follows. A nominal signature (see [13, Section 8.1]) starts with a set of
name-sorts N and the set of data-sorts D. We will be interested in the case when there is only one
name-sort V ar.

A compound sort S is defined as an expression formed from V ar, elements of D, and the unit sort
1 using two operations: one sending S1 and S2 to (S1, S2) and another one sending S to V ar.S.
For better notations one takes ( , ) to associate on the left i.e. (S1, S2, S3) means ((S1, S2), S3) and
similarly for longer sequences.

Let CS be the set of compound sorts. An arity is a pair (S,D) where S 2 CS and D 2 D. Let
A(D) be the set of arities for the set of data-sorts D.

A nominal signature is defined as a set Op, which is called the set of operations, together with a
function Ar : Op ! A(D) which assigns to any operation its “arirty”. One writes O : S ! D to
denote that operation O has arity (S,D). We let ArCS and ArD denote the two components of the
arity.

For example, the nominal signature of the lambda calculus has one data-sort Term and three
operations V , L, and A of the form:

V : V ar ! Term

L : V ar.Term ! Term

A : Term.Term ! Term

The algebraic signature with one sort Term, one operation S in one variable and one constant O
will, in this language, have three operations:

V : V ar ! Term

S : Term ! Term

O : 1 ! Term

More generally, an algebraic signature is a nominal signature where

Op = Op0
a

{vD}D2D

with
vD : V ar ! D

and for O 2 Op0
O : (D1, . . . , Dn) ! D

for some n � 0 and D1, . . . , Dn, D 2 D where n and D’s may depend on O.

An example of a signature where variables are not terms is given in [13].
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A nominal signature can be used to construct terms of all compound sorts in the more or less
obvious way. Next one defines the notion free and bound occurrences of variables in these terms
and the notion of the ↵-equivalence. For a nominal signature ⌃ and a compound sort S one writes
⌃↵(S) for the set of ↵-equivalence classes of terms of sort S build using ⌃.

In the case when ⌃ is the �-calculus signature one gets the usual set of ↵-equivalence classes of
�-terms considering ⌃↵(Term).

To any nominal signature ⌃ one associates, following [13], a functor T⌃ : NomD ! NomD where
Nom is the category of nominal sets, as follows.

First one associates a functor [S] : NomD ! Nom to any compound sort S by the rule:

[V ar](X) = A

[D](X) = XD

[1](X) = 1

[(S1, S2)](X) = X ⇥X

[(V ar.S)] = [A](X)

where A is the standard atomic nominal set (the set of names with the canonical action of the
permutation group Perm) and [A] is the name-abstraction functor Nom ! Nom which is defined
in [13, Section 4].

Let OpD for D 2 D be the set of operations O with the target sort D, i.e., such that ArD(O) = D.
Then one defines T⌃(X) by the rule

T⌃(X)D =
a

O2OpD

[ArCS(O)].

For example, if ⌃ is the signature of �-calculus then

T⌃(X) = A

a
[A](X)

a
(X ⇥X)

One of the main results of [13] is that the functor T⌃ has an initial algebra I⌃ for any ⌃ and
(I⌃)D = ⌃↵(D).

Let us extend this construction to a monad on NomD and then on SetsD. First observe that for
any X 2 NomD the functor Y 7! T⌃(Y )

`
X is finitely presented and therefore it has an initial

algebra. Let us denote this algebra by NR⌃(X).

By [2, pp. 243-244], NR⌃ is a monad on NomD whose category of algebras is equivalent to the
category of T⌃-algebras (i.e. NR⌃ is the free monad generated by T⌃).

The functor Discr : Sets ! Nom which takes a set to the corresponding discrete nominal set has a
right adjoint Inv : Nom ! Sets which sends a nominal set X to the set of its fixed points XPerm.
The functors DiscrD and InvD form an adjoint pair between the categories NomD and SetsD.

Given a monad R on a category C and an adjoint pair (LF,RF ) where RF : C ! C0 is the right
adjoint, the composition R0 = RF �R � LF is a monad on C0.

Applying this fact to the monad NR⌃ and the pair (DiscrD, InvD) we conclude that the functor

R⌃ : X 7! NR⌃(DiscrD(X))Perm
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is a monad on SetsD.

For a family of sets X the functor T⌃
`

DiscrD(X) is naturally isomorphic to the functor T⌃+X

where ⌃ +X is the signature with the set of operations Op
`
(
`

D2DXD) and the arity function
defined on x 2 XD by Ar(x) = (1, D) and

R⌃(X) = NR⌃(DiscrD(X))Perm = IPerm
T⌃

`
DiscrD(X) = IPerm

T⌃+X
.

Therefore
(R⌃(X))D = (⌃+X)↵(D)Perm

is the set of invariants in the set of ↵-equivalence classes of terms of sort D with respect to the
signature ⌃+X i.e. the set of ↵-equivalence classes of closed terms of sort D with respect to ⌃+X.

If XD = {x1,D, . . . , xnD,D} are finite sets, then the terms with respect to the signature ⌃+X can be
seen as terms with respect to ⌃ which depend on additional parameters xi,D of the corresponding
sorts and the closed terms as the terms with respect to ⌃ relative to the name space A

D +X such
that all the occurrences of names from A

D are bound and all the occurrences of names from X are
free.

To obtain from this construction a pair (R,LM) of a monad on Sets and a left module over this
monad with values in Sets we will use Lemma 2.5. Let Term 2 D and Type ⇢ D. Let P a family
of sets parametrized by D�Term. For a set X let (X,P ) be the family such that (X,P )Term = X
and (X,P )D = PD for D 6= Term.

Then X 7! (R⌃(X,P ))Term is a monad R⌃,T erm,P on Sets by Lemma 2.2 and

X 7!
a

D2Type

(R⌃(X,P ))D

is a left module LM⌃,T erm,P,Type over R⌃,T erm,P by Lemmas 2.5 and 2.4(b).

Example 7.1 The C-systems of generalized algebraic theories (GATs) of [3],[4] (see also [5]) are
obtained by using algebraic signatures with two data sorts D = {Term, Type}, Type = {Type}
and P = ;. The “symbols” of the GAT are operations of the corresponding algebraic signature.
The term symbols of degree n have arity (Term, . . . , T erm) ! Term and the type symbols of
degree n have arity (Term, . . . , T erm) ! Type where in both cases the lentth of the sequence
(Term, . . . , T erm) is n.

Example 7.2 To define the Martin-Lof Type theory MLTT72 of [10] one needs to consider the
case when D = {Term} and the nominal signature is of the form:

v : V ar ! Term

⇧ : (Term, V ar.Term) ! Term � : (Term, V ar.Term) ! Term

app : (Term, Term) ! Term

⌃ : (Term, V ar.Term) ! Term pair : (Term, Term) ! Term

E : (Term, V ar.(V ar.Term)) ! Term

+ : (Term, Term) ! Term i : Term ! Term j : Term ! Term

D : ((Term, V ar.Term), V ar.Term)) ! Term

18



V : 1 ! Term

Nn : 1 ! Term in : 1 ! Term Rn : (Term, . . . , T erm), . . .) ! Term

n � 0 1  i  n

N : 1 ! Term 0 : 1 ! Term s : Term ! Term

R : ((Term, Term), (V ar.(V ar.Term))) ! Term

Note that in fact E, D, Rn, and R should also have the type family C (see [10, 2.3.6, 2.3.8,
2.3.10, 2.3.12]) as an argument which, in our notation, means an additional component of the form
V ar.Term in their arities.

In fact, the original definition from [10] allows for additional “type constants” (see [10, 2.2.1]) of
various algebraic arities which are analogous to the predicate constants in the predicate logic. As
such it is a definition of a family of type systems. The signatures underlying all type systems in
this family are obtained by extending the signature described above by a set of operations of the
form P : (Term, . . . , T erm) ! Term.

For the signature of the MLTT78 see [11, p. 158]

Remark 7.3 It is possible to “encode” a nominal signature in typed �-calculus using the idea
that closed terms are objects of a base type term, terms with one free variable are objects of the
type term ! term, terms with two free variables are objects of term ! term ! term etc. This
encoding allows one to describe the substitutions of closed terms into terms with free variables as
applications in the meta-theory. However, it does not allow to describe the substitution of, e.g.,
terms with one free variable into terms with one free variable, i.e., the full monadic structure is not
recoverable from such a description. This is the reason why the use of typed �-calculus systems
such as the Logical Framework for the description of the syntax of dependent type theories is of
limited use.
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